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PREFACE

In September, 1968, an analytical study of the dynamic response

of laterally loaded offshore piles was begun. The one year pro]ect

was partially funded by the National Science Foundation Sea Grant

Program institutional grant GH-26 made to Texas A&N University.

This report describes the developments of that study. In addition, the

writer used the contents of this paper to fulfill the dissertation re-

quirements of his Doctor of Philosophy degree at Texas A&N University.

As a continuing study, Texas A&N University received support

from the National Science Foundation Sea Grant Program for 1969 through

1970 through institutional grant GH-59 to investigate the static and

dynamic resistance of a cohesive soil when loaded laterally by a pile,

The results, now receiving final evaluation, will provide valuable

input to the mathematical model described herein. A similar study

on cohesiveless soils was begun in September, 1970. This one year

study will also be partially funded by the National Science Foundation

Sea Grant Program through institutional grant GH-101.



ABSTRACT

A mathematical model which describes the dynamic response of a

laterally loaded offshore pile was developed in this research.

Interaction effects between the pile and its water environment were

considered in formulating the problem. Also considered were the

nonlinear material properties of the soil and the geometrical non-

linearity of the pile. A discrete element system was utilized in

idealizing the pile, soil, and water medium. Airy wave theory was

used to describe the wave kinematics and Morison's equation was

used to describe wave kinetics.

To solve the second-order nonlinear differential equations of

motion of the system, the fourth-order Runge-Kutta numerical inte-

gration method was applied. Matrix notation was used in formulating

the problem and a computer program was written to provide numerical

solutions.

Dynamic tests were conducted on three different size model

piles and the results were compared with simulated results from the

mathematical model. A close comparison verified the accuracy of

the model and analysis employed.

Parameter studies were conducted to determine the influence of

some of the significant factors on the pile's response, The effects

of soil modulus of subgrade reaction, soil damping, wave-pile inter-

action, and axial load in the pile were investigated. A typical

offshore pile was utilized in the studies.
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CHAPTER I

INTRODUCTION

l.l General

Offshore exploration for crude petroleum has increased at a

steady pace for the last ten years. Drilling platforms have been

located in deeper and deeper water to keep pace with the ever-

increasing demand for oil and its by-products. Defense installa-

tions and weather recording devices have been placed offshore for

obvious reasons. This expanding offshore activity has met with an

increase in design complexities since hydrostatic and hydrodynamic

forces increase in the deeper water.

Many offshore structures are supported by piles driven into

the bed of the ocean. Frequently, the critical factor in the

design of these structures is the lateral dynamic loading from

waves. In the past, little consideration has been given to the

dynamic effects of wave forces on structural integrity. This lack

of consideration was not an oversight on the part of design engi-

neers but rather was due largely to the complexity of the problem

and the lack of high-speed computers needed to solve such problems,

Knowledge of the interaction between the pi.le and its water

and soil environment is a requisite to accurately compute the

response of a pile-supported offshore structure. This research

The citations on the following pages follow the style of the
Journal of the Structural Division, Proceedings of the American
Society of Civil Engineers.



attempts to fill this need by developing an analytical method of

predicting the dynamic response of offshore piling.

Although this research is primarily concerned with offshore

piling, it has applications in other areas. For example, the marine

riser on an offshore drilling platform is subjected to wave action

between the platform and the bed of the sea. A floating rig which

extracts samples or drills for oil may operate in water of consid-

erable depth and its riser may experience high dynamic loads.

It was apparent after a review of the literature that pub-

li.shed reports on the dynamic response of piling due to wave action,

taking into account the interaction effects between the pile and its

water and soil environment, were practically nonexistent. The need

for such an investigation became quite evident.

To date, considerable effort has been expended in the field of

soil-structure interaction, particularly under static loads and in

some cases under dynamic loads' In laterally loaded pile studies

the usual approach to the problem has been through experimental

analysis, by either prototype or model. Economically, experimental

analysis is often undesirable. Another undesirable feature is

that the results are usually applicable to only the type of piles

tested.

In most analytical studies found in the literature, inherent

assumptions usually limit their results to special cases in which

the soil and pile behave as linear elastic systems. For some

applications, these assumptions may lead to relatively accurate



results, whi,le in others they may result in completely erroneous

conclusions. At present the uncertainty remains, especially in

dynamic analysis,

l.2 Literature Review

After studying much of the literature in the field of struc-

tural dynamics, it was learned there was no precedent for the

particular problem undertaken in this investigation. That is not

to say that the work of others in related studies could not be

exploited. Since this research embraces the work of three distinct

disciplines, namely structural mechanics, hydromechanics, and soil

mechanics, the writer felt it appropriate ta review the basic lit-

erature in each field as related to this research and review the

work concerning their interaction.

Pile medium. Recent advances in high-speed computers have

resulted in a general acceptance of the "finite element" method of

analysis for structural problems heretofore regarded as unsolvable.

Numerous publications  l8,33,43! are available to aid in applying

this method to the problem at hand, i.e., the structural idealization

of the pile medium for dynamic analysis.

Water wave medium. Since the studies of Morison, et al, �9!

it is common practice to compute wave forces on piles by separating

the total resistance force into two components, a drag force and an

inertia or mass force. Heeded in computing these force components

are drag and inertia coefficients corresponding to a particular



wave theory and pile size. The major problem lies in selecting one

of a number of available theories and subsequently calculating the

required information, which, for higher order theories, is a rela-

tively complicated procedure.

The work of Dean �,5! presents criteria which can be used to

assess the validity of various wave theories and attempts to estab-

lish the particular theories providing best boundary condition fits

for wave conditions of engineering significance. The interested

reader may also refer to the former paper for a good bibliography

on the different wave theories. Dean's work is a significant step

forward in reducing the uncertainties involved in the computation

of wave forces on offshore structures.

After selecting the appropriate wave theory, drag and inertia

coefficients are established. Several sources �,42,6! may be

referred to for this purpose. The latter reference offers the most

recent comparison of available coefficients, and it also contains

a good reference list documenting many of the studies conducted in

this field.

Soil medium. Analytic description of soil behavior continues

to be a challenge to the scientist and engineer. The generally

accepted approach is to conveniently define a rheological model

which will simulate to a reasonable degree the behavior of the soil

under analysis. The task of determining such a model is generally

far from simple and to date no widely accepted model has been

devised.



To define the resistance of a material to dynamic loading,

Lord Kelvin originally expressed it in terms of a static plus a

dynamic component. Voight derived the mathematical relation for

the rheological model of Kelvin, from which the well known Kelvin-

Voight model originated. As a seemingly logical choice, many engi-

neers have utilized the Kelvin-Voight model in soil mechanics for

some time.

In recent years, Smith �8! and Samson, Hirsch, and Lowery �3,

36! have successfully used a form of the Kelvin-Voight model in pile

driving analysis. One of the uncertainties these researchers met in

applying this model was the amount by which the soil damped out the

pile's motion. Gibson and Coyle �1! have attempted to shed some

light on this problem.

Penzien, et al, �1! used a form of the Kelvin-Voight model in

studying the response of a pile-supported bridge to seismic distur-

bances. Their work was of particular interest since it included a

determination of the dynamic response of laterally loaded piles.

Other researchers �5,19,21,4Q! in the field of earthquake engi-

neering have made significant contributions which will aid in

understanding the dynamic properties of soil.

Chan and Hirsch �! published an annotated bibliography con-

cerning available data on soil dynamics and soil rheology. It is a

concise and convenient source of information on the subject,

covering many important publications up to 1966.



Interaction between the three media. In the classic or exact

approach, Timoshenko �1! has solved the problem of a vibrating

elastic beam on a massless elastic foundation. As related to this

investigation, Timoshenko's solution is mainly of academic nature

but could possibly be used as a check on the accuracy of the numer-

ical solution. Others have applied various boundary conditions to

Timoshenko's solution but none have considered the effects of

inelastic and nonlinear behavior of beam and foundation.

Matlock and Reese �5! developed a generalized solution for

laterally loaded piles with static loads. The force-deformation

characteristics of the soil were considered to be nonlinear and the

solution to the differential equations was accomplished by an

iterative procedure using repeated applications of elastic theory

with the soil modulus constants being adjusted at each successive

trial. Feibusch and Keith �! utilized the solution of Matlock and

Reese in deriving a method of analysis for statically loaded pile-

supported offshore structures. Their analysis included the com-

bined effects of the elastic structure and piles with the inelastic

properties of the supporting soil.

The dynamic response of docking structures was investigated

analytically by Michalos �7! . A simplified approach to the

problem was taken in that only a single degree-of-freedom system

was considered with the point-of-fixity method being used to simu-

late the soil's lateral restraint. Subsequent discussions �4! of

this paper questioned the value of such a simplified analysis



suggesting that a more accurate representation could be realized by

accounting for the inelastic properties of the soil.

Spillers and Stoll �9! considered the effects of a continuous

soil medium on the interaction of laterally loaded pile. Two

idealized models were analyzed, �! an elastic pile in an elastic

half space, and �! an elastic pile in an elasto-plastic half space.

Use was made of the "Nindlin equation" �8! in determining soil

properties relating deformations within the soil at specific points

to the resulting soil forces. Their study was also limited to

static load analysis.

The dynamic response to seismic disturbances of structures

supported on long piles extending through deep sensitive clays was

considered by Penzien, et al �1!. Their method of analysis

accounted for the interaction between the superstructure  a spe-

cific bridge structure! and its pile foundations and the inter-

action effects between the pile foundation and their surrounding

clay media. Extensive soil tests were conducted and their results

used to determine the nonlinear hysteretic stress-strain relations,

damping characteristics, and the creep characteristics of the clay.

In the study, an attempt was made to use the continuous soil medium

approach of Spillers and Stoll �9! but after considerable effort

had been spent the decision was made to simplify the problem by

using uncoupled soil properties, often called the Winkler assump-

tion. This approach led to an extremely complicated method of anal-

ysis which would have required a great effort to reach a solution.



In another study involving earthquake motions, Fleming,

Screwvala, and Konder  8! conducted an analytical study which was

concerned with the structure-soil interaction. The structure was

idealized by a lumped mass mathematical model which is attached to

the moving rock jayer by a flexible member having the same force-

displacement relationship as the foundation. The soil properties

were assumed to be linearly elastic and the effect of soil damping

was not considered. They conclude that in earthquake analysis com-

pletely erroneous results may occur if the foundation superstructure

interaction is not considered,

One of the earliest studies in the dynamics of laterally loaded

offshore piles was reported by Gaul �0! . A dimensionally scaled

model of a vertical pile in a weak marine foundation was dynamically

tested by application of a time varying sinusoidal load, similar to

that produced by ocean waves. Test results indicated that for

"relatively" low frequencies of load oscillation no dynamic load

factor is required to produce the same maximum subsurface bending

moments in the pile under static and dynami,c loading. As Gaul

points out, however, the determination of reliable load factors by

model studies would require testing over a wide range of forcing

frequencies, types of piles, and types of foundations. Several

other investigators �6,11,26,32! have conducted experimental

studies of both model and prototype piles under dynamic loading.

Interest in the dynamic behavior of offshore structures

increased considerably following the collapse of the Texas Tower



Number 4 radar platform in 1961, offshore from New Jersey. Its

failure has been attributed to a resonance condition, initiated by

waves whose heights were considerably less than what was considered

to be the "design" wave height. In their study, Harleman, Nolan,

and Honsinger �4! performed a dynamic analysis of an offshore

structure in oscillatory waves, a structure similar to the Texas

Tower. The structure was idealized as a single degree-of-freedom

equivalent spring-mass system, with no soil-structure interaction

considered. It was concluded that the highest wave to be expected

in a given locality is not necessarily the critical design wave,

giving credence to the postulated cause of fai,lure in the Texas

Tower.

Billington, Gaither, and Ebner �! investigated the response

of a three-dimensional four-legged tower subjected to wave loading

by use of a mathematical model and an experimental model, The

mathematical model consisted of lumped masses interconnected by

weightless elastic springs. Distributed water damping forces were

assumed to be linearly dependent upon velocity and internal damping

was assumed to vary linearly with the frequency of the forcing

function. Soil structure interaction was not considered. It is

this author's opinion that these limitations greatly restrict the

application of their results.

Three papers of interest were presented at a specialty confer-

ence in 1967, all three dealing with the dynamic response of off-

shore structures. In the first  9! of these papers an attempt was
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made to study the system which produces waves, the kinetic and

kinemat ic properties a f the waves, the s true tural sys tern, and its

interaction with the water environment. The second paper �0! was

concerned with the design of offshore bottom supported structures

which are subject to both periadic and random wave forces. Boih

analytic and experimental studies were made. Among other results,

an expression is presented from which the optimum support spacing

for a structure built an four supports and an "adequate foundation"

can be determined, resulting in minimum platform response. It was

also concluded that for large diameter cylinders in deep water,

the drag component in the Marison equation can be neglected. In

the third paper �7! it was concluded that the three-dimensional

behavior of an offshore structure is of importance and the inter-

action of structure and wave can be of consequence under certain

circumstances. The importance of wave-structure interaction was

also emphasized by Gomez-Rivas in a recent publication �3! . It

should be pointed out that none of these studies considered the

effects of soil-structure interaction.

1.3 Procedure

Since there was a marked absence of information on the dynamic

behavior of laterally loaded offshore piling the primary reason for

conducting this study was to advance the "state-of-the-art." Xn sa

doing, the following procedure was followed:



1 ~ An analytical solution was developed for the dynamic res-

ponse of an offshore pile when subjected to wave forces,

considering the interaction effects between the pile and

its water and soil environment. Nonlinear properties of

the soil and pile were considered. The solution was

attained by applying numerical techniques to the differ-

ential equations of motion. A discrete parameter system

was used to approximate the three continuous mediums,

i.e., the pile, soil, and water.

2. Dynamic tests were performed on model pi,les and the

results were compared to simulated results from the

analytical solution.

3. The influence of significant parameters on the dynamic

response was investigated.

4. The mathematical solution was applied to obtain the

dynamic response of a typical offshore pile.
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CHAPTER II

THE IDEALIZED NODEL

2. 1 General

Although closed-form solutions exist for a class of vibrating

elastic beams on massless elastic foundations constrained to par-

ticular boundary conditions, none exists for a pile  or beam! sup-

ported by a viscoelastic or viscoplastic media sub!ected to time-

dependent excitation loads of the type found in water waves. The

mathematical complexities of such an approach prohibit its consid-

eration.

In lieu of an exact solution, the next logical step is to

formulate an idealized or mathematical model based on approximations

and simplified assumptions which will represent, within acceptable

tolerances, the physical system. After a satisfactory model has

been defined, the laws of mechanics dictate the mathematical formu-

lation  the differential equations of moti.on in this case!; and

with the aid of matrix methods, numerical integration techniques,

and a high-speed digital computer, a solution is usually possible.

Laboratory and field test results are then relied on to determine

its validity.

The following sections describe the idealizations chosen to

represent the physical system of this problem, viz., the pile,

water, and soil.
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2.2 Pile Medium

The usual procedure for idealizing a continuum with an infinite

number of degrees of freedom such as a pile with a distributed mass

is to discretize or lump the continuum into a finite number of

masses. This procedure is employed in this investigation. The

lumped masses are interconnected by weightless elastic springs

whose stiffnesses are determined by the force-deformation charac-

teristics of the segmented pile elements.

The first step in the idealization is to segment the pile into

a finite number of elements as shown in Figure 2.1. The juncture

of two pile elements is termed a node, at which the distributed

mass is lumped. Several factors must be considered when selecting

the number of pile elements.

1. The chosen number of elements must represent a compromise

between an exact representation of the real structure,

which theoretically requires an infinite number, and the

computer time required to reach a solution, which increases

with increasing lumped masses.

2. Due to the nature of wave forces, described in a subsequent

section, care must be taken in selecting the number and

location of nodes along the length of pile between the

wave's crest and trough and along the length immediately

below the trough.
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3. The manner in which the soil resistance varies with depth

may have an ipfluence on the number and location of nodes

below the mudline. As described subsequently, the soil's

dynamic resistance is assumed to be localized at the

respective nodes.

4. Many offshore piles have varying degrees of stiffness

along their length. Most piles are stiffer in the vicinity

of the mudline where the internal pile stresses are

usually a maximum; this factor should be considered in the

idealization.

After selecting the number and location of the nodes, the mass

and stiffness matrix can be assembled. A simply procedure is used

to lump the masses; half the mass of each segment is placed at the

ends of the segments. Referring to Figure 2.1, the mass of node

i is designated M., and is computed by Equation 2.1:
i

05 L +Z, !

where, wi weight of segment i per unit length

g = gravitational acceleration

Note that the pile segment number is taken as the number of the node

immediately above it. The total pile mass matrix, IM], a diagonal

matrix, is the assemblage of all the lumped masses, i.e.,



3.6

M2 M n-1 M
n

To account for the platform's inertia an equivalent platform

mass was added to the lumped mass at node 1. Although this value

may be difficult to determine, some provision must be made for its
influence in establishing a reliable model of the pilewater-soil

system. After this model is validated the next logical step would
be a dynamic analysis of the entire structure, which would elimi-

nate the need of defining an equivalent mass.

Force-deformation properties of the pile can be readily

obtained by use of matrix methods. Consider the pile segment

shown in Figure 2.2, which has a modulus of elasticity E, moment

of inertia I, and cross-sectional area A, along its length.

y

!
l

FIGURE 2.2 - PILE SEGMENT
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The q's denote displacements of the segment ends in the x-y coordi-

nate system, e.g., q< equals the displacement of the right end in

the x direction. Only displacements in the x-y plane are considered.

Stress resultants at the member ends are denoted by s subscripted

in the same manner as q. If the material mechanical properties of

the segment are linearly elastic, di.splacements are "small", and

the axial load "small", then the stress resultants are linearly

related to the displacements, The constants of proportionality

relating stress to displacements are called the elastic member or

segment stiffness matrix, denoted as [k ].
e

Most offshore structures are designed according to specifi-

cations which limit working stresses to a value below the material's

elastic limit thus preventing material nonlinearity. Further, the

specifications usually limit displacements to within what can be

termed small displacements so that the equilibrium equations formu-

lated for the undeformed configuration need not be modified for the

deformed configuration. This analysis assumes that these two con-

ditions, i.e., linearly elastic material properties and small

displacements, are met ~

It is generally known that the lateral stiffness of a struc-

tural member is dependent on its axial load. To account for the

effects of axial load on the element's stiffness, use is made of

the so-called element "geometrical matrix", [k ]. A detailed des-
g

cription of its derivation can be found in the literature �3! and

will not be given here.
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The equations of equilibrium for the beam element can nov be

written as

[k ] q! + [k �. 3!

where

Sy>METRICAL

�. 4!t~ ]
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and

6
0

5
SYMMETRICAL

L 2L

10 15

[k] � 0 0
p

g L
�.5!0 0

f 0
6 L

5 10
0 6 5

L L
0

10 30

L 2L

10 15

where

E" �  q -q!
EA

L 4 l
�. 6!

Equat ion 2. 3 can be rewri t ten as

�.7!Es] ~ tk + k ]Eq]
e g

If the axial load, P, remains constant as lateral loads are applied,

the element's stiffness, defined by [k + k ], remains constant.
g

In this manner, tk ] acts to increase the lateral stiffness if the
g

axial load creates tension in the element and reduces it if the

axial load creates compression.

It is assumed that the axial load in each pile segment remains

constant during a given event or analysis, although the axial load

along the pile's length is permitted ta change from segment to
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and

0
6

5
SYMMETRICAL

L 2L
0

10 15

[k ]
F

g L
� ~ 5!0 0

6 L 6
0

5 10
0

5

! L L L 2L
0 0 10 30 10 15

where

F- �  q -q!
4 1

�.6!

Equation 2. 3 can be r ewri t ten as

 s] [k + k ][q!
e g

Xf the axial load, F, remains constant as lateral loads are applied,

the element's stiffness, defined by [k + k ], remains constant.e g '

In this manner, [k ] acts to increase the lateral stiffness if the
g

axial load creates tension in the element and reduces it if the

axial load creates compression.

Xt is assumed that the axial load in each pile segment remains

constant during a given event or analysis, although the axial load

along the pile's length is permitted to change from segment to
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segment. Thus, for a known axial load and the mechanical and geo-

metrical properties of the pile segments, each individual element

stiffness matrix can be computed, herein denoted as [k].

[k] [k +k ]
e g

After determining the stiffness matrix of each element, the

stiffness matrix of the entire pile is assembled. Since the liter-

ature contains information on the procedure for this assemblage �3,

43!, a detailed description is unnecessary.

7.
Node i,

JL

FIGURE 2.3 � NODE i DEGREES OF FREEDOM

Referring to Figure 2.3, Qi is used to denote a displacement

at node i in the j direction. Similarly, S. is used to denote an

external load at node i in the j direction. Equilibrium equations

for the pile can therefore be written as
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 Sj = [KP] Q! �.9!

where [K ] is the assembled stiffness matrix for the pile.

As mentioned previously, some consideration must be given to

the influence that the platform has on the dynamic properties of

the pile. Consider Figure 2.4.

Node 1

FIGURE 2.4 � EQUIVALENT PLATFORM STIFFNESS

As shown, k is used to denote the lateral stiffness offered by the

platform and k its rotational restraint. Again, these values may

be difficult to determine but their effect on the pile's response

must be considered in an analysis of this type. The values of k

and kR are added to the appropriate elements of the stiffness

matrix [K ] .

Internal friction within the material of the pile results in

structural damping. In an elastic system it, is generally agreed

that the structural damping force is directly proportional in
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magnitude to the internal elastic force and acts in the opposite

direction to the velocity vector. If the proportionality constant,

relating the damping forces {SD} to the elastic forces {S! is

assumed to be constant for all segments of the pile:

{S } = -y W {~S~}
hei

where the dot represents a derivative with respect to time. Sub-

stituting the value of {S! from Equation 2.9 into Equation 2.10

gives

{S } = � p Ar {![K ]{Q!!}

2.3 Water-Wave Medium

Several theories exist which analytically describe the kine-

matics of different type water waves. For a given set of condi-

tions, water depth, wave height, etc., one theory is usually more

accurate than the others and determining which is the most appro-

priate often presents a perplexing problem. If the Norison equa-

tion is used to define the wave's kinetics, drag and inertia

coefficients based. on the chosen theory are required, an important

factor to consider when making the selection. Fortunately,

interest in offshore activity has resulted in a concentrated effort

to alleviate the problems associated with wave selection and wave-

force computations.
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mD
2

 ,t! = Ip ~ a z,t! + 2C pD v z,t! v z,t!z
�.12!

inertia coef ficient,

drag coefficient,

mass density of water,

diameter of cylinder at depth z,

water particle acceleration in horizontal direction

at depth z and time t,

where, C

C

a z,t!

Because of its inherent simplicity, and In many cases its

ability to represent the kinematics of a variety of water waves, the

Airy or linear wave theory is often used in the analysis of periodic

wave problems; for these reasons it was selected for use in this

investigation. It should be noted, however, that the numerical

methods used to solve the differential equations of motion provide

considerable flexibility in the selection of wave theories. For

example, the same method of analysis can be applied to study the

pile's response to waves described by the Stokes third order theory,

Stokes fifth order theory, Solitary theory, and others. An exten-

sion of this study could quite feasibly amend the computer program

to give the user an option in selecting the wave theory.

Norison's equation, which was applied in this study, defines

the total force on a structure due to wave action as the resultant

of an inertia force and a drag force. For a stationary cylinder

the force per unit length in the horizontal direction f z,t! at

depth z and time t is given by:
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and

v z,t! = water particle velocity in horizontal directions at

depth z and time t,

The inertia and drag coefficients are dependent on the pile's

geometry, proximity effects of other piles or structures, surface

roughness, and other conditions. Ippen �0! discusses factors

which influence CI and C and presents a summary of the results of
D

various investigators who have attempted to define their values.

It is well known that C is a function of Reynolds number,

R . Since R is a function of wave particle velocity, a time-
n n

dependent. quantity, C, is seen to be time dependent. In deter-

mining values for C the following general ranges of R and the

accompanying characteristics of C should be considered:

0<R <
n

1,000 C varies with R
n

�! 1,000<R <1,000,000 C approximately cons tant
n D

�! R >1,000,000 C varies with Rn ' ' D n

For pile dynamic studies the first range can normally be neglected

because particle velocities are small and consequently the drag

component of Equation 2.12 is negligible in comparison with the

inertia component. Values of R for offshore piles, subjected to
n

design waves, usually encompass the second and third ranges. For

example, the maximum value of R is approximately 5,000,000 for a
n

6-foot diameter pile, with a smooth surface, subjected to a 40-foot
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wave. Nevertheless, assuming the value of C in the second range is

valid for all ranges results in a conservative analysis because C

decreases af ter R enters the third range. It therefore appears

reasonable to simplify the analysis by making this assumption, as

has been done in this study.

Since most offshore piles exhibit a certain degree of flexi-

bility, Equation 2.12 must be modified to include interactive

effects between the pile and the wave. With reference to

Figures 2.1 and 2.3 and Equation 2.12, if f.  t! is the horizontal
i

force on the pile per unit length at node i,

f i  t! = <il   i   t! � Qi 1  t! ]

�.13!

where

vD.
2

i
K I CI P 4 7

1
KD 2 CD PDi

Q.  t! and Q  t! = absolute horizontal acceleration
i!l

and velocity, respectively, of the

pile at node i at time t,



and

cosh 8  h+z . !
v  t! = � o os gxmt!

sinh gh
�.14!

coshB h+z !
a.  t! =- � a . in gx-at!

i 2 sinh 5h
�.15!

In these expressions,

z. = distance from SWL  still water level! to node i
i

 note that zi is negative if node i is below SWL!,
2l

o = wave angular frequency = �,

= 2%5 = wave number =�

where T is the wave period and A the wave length, Also note that

the origin of  Bx-ot! is located at the wave crest.

'For simplicity, the pile is assumed to be located at x = 0.

Noting that

a. t! and v  t! = absolute horizontal particle accel-
1 i

eration and velocity, respectively,

at node i at time t.

Expressions for the water particle velocity and acceleration,

according to Airy or smail-amplitude theory, are given in Equa-

tions 2.14 and 2.15. Reference should be made to Figure 2.5 for

parameter definitions.
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Equations 2.14 and 2.15 can be rewritten as

cosher.'
i

i<t! 2 0 siah ftt, �,t �.17!

cosh6r.
l

1 2 sinhfth
�,18!

The expression for the instantaneous vertical displacement of

the water surface above or below SML is given by rl, where

H
q = � cos at

2
�.19!

For compatibility with the discrete parameter system selected

for the pile, the distributed force of the wave must be resolved

into a series of concentrated nodal loads. Referring to Figure 2.5,

the concentrated force on node i is given by F. t!, where
i

  ! = f  t! [0.5 L. j + .!] �,20!

As seen in Equations 2,17 and 2.18, particle velocities and

accelerations at a given time t vary exponentially with the vertical

position along the pile, r . It follows from Equation 2.13 that

f. t! varies in a similar manner, and that its rate of change

increases as r increases. Consequently, discretion must be

exercised in selecting the spacing between the nodes, especially

along the length of the pile immediately above and below SWL where

the rate of change of f. t! is greatest, so that large errors are
i

not introduced by the linear assumption inherent in Equation 2.20.
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Letting

�. 21!L ~ 05 L 1+L !

and by use of Equation 2.13, Equation 2.20 can be rewritten as

F.  t! = K.ILi tai t! - Qi 1 t! 3

+ iDLi <vi  t! Qi ]  t! > �. 22!

In matrix notation, the concentrated nodal forces may be written as

Fl t!

F  t!

 F t!! �.23!

2.4 Soil Medium

Previous investigators have used many types of rheological

models to describe the static and dynamic behavior of soil; and

although many of these models have met with a certain degree of

success, no particular one has been generally accepted for all

cases, Some of this can no doubt be attributed to the diverse

nature of the problems undertaken.

The idealized discrete model selected to represent the dynamic

properties of the laterally loaded soil and its force-displacement

characteristics are shown in Figure 2.6. A similar model has been
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used successfully in describing the verti,cal response of piles

during driving �3,36,38! and in describing the lateral response of

piles during seismic loading �1!. A model of this type was placed

on both sides of each node along the length of pile between the

water-soil interface and the pile's base  nodes j through n in

Figure 2.1!. Interaction between soil elements was assumed negli-

gible, i.e., it was assumed that deformation of one soil element

did not change the properties of the others. This is commonly

called the Winkler assumption.

Figure 2.6 b! depicts the force-displacement properties of the

model in two forms, its resistance to slowly applied deformations

 " static" curve! and its resistance to dynamically applied deforma-

tions  " static plus dynamic" curve!. In the static case, the soil's

resistance at node m, P , is proportional to the pile's displace-

ment Q , provided the displacement is less than or equal to LmU'

Any pile movement in excess of +L is met by a constant resistance,
mU

P, the ultimate static load capacity of the soil at node m. Dis-

placement beyond point a in Figure 2.6 also causes permanent. set in

the soil equal to the distance between points a and b, denoted as

PPS  positive permanent set at node m! . If permanent set occurs,

the pile segment returns along bc, the slope of line bc assumed

equal to oa. From point c to point o, whose length also equals

PPS , the pile segment experiences no soil resistance due to the

gap developed between the pile wall and soil.
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As the segment moves slowly to the left of its undeformed

position  negative direction!, the soil 's resistance characteristics

are similar to those for positive displacements. In this case,

NPS denotes the negative permanent set at node m and its value is

equal to the dis tance de, or f o.

If, during the pile's response history, positive permanent set

occurs at node m, the resistance of the soil as the segment returns

to the right is traced by ocbgho and the permanent set would then

equal to the distance ag. If negative permanent set occurs, the

resistance would be of a similar nature.

The "static plus dynamic" curve represents the total soil

resistance and equals the sum of the soil's spring resistance, and

the viscous damping resistance. Its height above the "static"

curve is a function of the rate at which the damper is deformed.

As shown in Figure 2.6, it was assumed that the damper is active

during increasing displacements only and consequently does not

retard the pile's return toward the undeformed position.

Researchers �1! have demonstrated that the damping force in

sail, P , can be described by use of the model shown in Figure 2.6! ' md'

and Equation 2,24.

�.24!

where

P static resistance in soil spring
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and

J and n = constants dependent on soil properties.
m m

From o to a':

n

'm �.25!

where

, =  ,! e,! �,25a!

From a' to b:

n

-P�[ +  ! Q,! �. 26!

From b to c:

�. 27!P = P
m ms

where

P =  K !  Q � »S !
ms ms m, 1 m

� ~ 27a!

From c to o:

�.28!P = o
m

The term P in Equation 2.24 is included to account for the quan-
ms

tity of soil being displaced at node m.

Expressions for the total soil resistance P at node m, during
m

a typical displacement, defined by the path oa'bco in Figure 2.6b,

are given by Equations 2,25 through 2.28.
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Therefore, in general, Equations 2.29 are general equations

for soil resistance at each node:

 p!  p ! +  p !
s d

�. 29!

where

 P ! -  N ! LK 3 Q1! + tN !  P ! +  N ! EK ! PPS! �.30!

and

 Pd! tN43  P ! L3J  Q ! � ~ 31!

range ~ o to a' a' to b b to c c to o

+1N ml

N
m2

N
m3

+1+lN
m4

As another example, consider the resistance at node m according to

ocb'gho, in which case

The order of P is  n-$! by 1  reference Figure 2.1!. In Equa-

tions 2.30 and 31, values of the N's depend on the pile's position,

direction of motion, and the amount of permanent set. With refer-

ence to Figure 2.6, for resistance at node m according to the path

oa'bco, the N's have the following values:
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range ~ o to c c to b ' b' to g g to h h to o

0 +l 0N ml
0 0N

m2

N
m3

N
m4

As the pile interacts with the soil, some quantity of soil is

accelerated developing an inertia force which acts against the

pile's motion. The actual quantity or "effective" mass of soil

influenced by the motion is difficult to determine. Fortunately,

however, these inertia forces are usually small compared to the

soil's spring forces and the pile's elastic shear forces and can be

neglected �2!. The effective soil mass was assumed negligible in

this analysis.

The pile also experiences some rotational restraint and rota-

tional damping from the soil. These effects are usually negligible

also when compared with their lateral counterpart.

Another assumption inherent in the proposed soil model is that

creep effects in the soil are of secondary importance. It is recog-

nized that with repeated loads from ~aves of varying magnitude the

soil characteristics will be in a continual state af flux and may be

influenced to some extent by the degree of creep that occurs. How-
I

ever, the computer time required for such an analysis would be pro-

hibitive, so the method of analysis proposed herein is applicable

for determining the response of a pile over relatively short periods
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of time only, During short time periods it is doubtful that creep

effects will significantly influence the pile's response This

time limitation will not restrict the applicability of the method

provided the soil characteristics are definable at the beginning of

the time period under analysis.

2.5 Equations of Motion

An idealization of the entire system is illustrated in

Figure 2.7. In general, for the planar case, each node or lumped

mass has three degrees of freedom. Thus a system having n nodes

would. have 3 n! degrees of freedom. For small displacements the

vertical motion of the pile is independent or uncoupled from rota-

tional and horizontal motion, as assumed. Since the excitation

forces under consideration result in lateral and rotational motion

only, the number of degrees of freedom of interest reduces to 2 n!.

In formulating the equations of motion it was further assumed

that the rotational inertia of each lumped mass and the structural

damping of the pile associated with the rotational displacements

were negligible when compared to their lateral counterparts. These

assumptions together with previously mentioned assumptions regarding

the soil's rotational restraint in effect reduced the number of

equations of motion necessary to define the pile's response to n and

permit the use of a "reduced" pile stiffness matrix. With reference

to Equation 2.9, [Kp] can be written as
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[KP]- �. 32!
KP

S

where [j ] is the portion due to vertical displacements [Qi 2},-P

which are of no relevance, and [K ] is the portion due to lateralP

and rotational displacements,  Q. } and [Q. }, respectively. Byi,l iq3

partitioning, [KS] can be written asP

LL LR

RL "RR
[KP]-

S
�.33!

where

[aL ] = matrix of stiffness coefficients which relate lateral
displacements to lateral loads, all other displacements

being zero;

[a ] = matrix of stiffness coefficients which relate rota-
LR

tional displacements to lateral loads, all other dis-

placements being zero;

RL LR
T.

and:

[0RR] matrix of stiffness coefficients which relate rota-
tional displacements to rotational loads, all other

displacements being zero.

From the assumptions regarding the rotational degrees of freedom,

the pile's elastic resistance  SL} to lateral displacements [Q. lji,l

is given by
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�. 34!

and the structural damping fS ! in the pile is given by
DL

 sD<! = -u ~~ tK~R] gz >!~ �.35!

where

LL] ~ LR][ERR] LR] �.36!

O Qi

"B Qi,a
+ + �.37!

Each term in Equation 2.37 has been defined previously. For con-

venience, the equations have been partitioned, with the subscript

"T" referring to degrees of freedom above the ocean bottom and "8"

referring to those below the ocean bottom. This procedure permits

efficient uti1.ization of computer storage space in the solution

process.

Thxough this reduction procedure the nodes are allowed to rotate and

move laterally but only n equations of motion ax'e needed to describe

the pile's motion, where the n unknown are the lateral displacements

at the nodes.

To simplify notation, the lateral displacements  Q ! will

henceforth be denoted as  Q.!. The equations of motion are given by
i

Equation 2.37.
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CHAPTER III

NUMERICAL SOLUTION TECHNIQUES

3.1 General

To solve the second order nonlinear differential equations of

motion of the system, three different numerical integration schemes

were attempted, namely, a recursion method, Milne's predictor-cox-

rector method, and the fourth-order Runge-Kutta method.

Recursion method. An effort was made to develop suitable

recurrence equations by substituting various finite difference

formulas for their equivalent in the equations of motion. However,

due to the degree of nonlinearity of the problem this approach met

with little success.

Milne's redictor-corrector method. This method can be used

to solve higher-order equations of the type found in this study and

the procedural steps for its application can be found in most

"numerical methods" books. Basically, as related to this study, an

integration formula employing four previously known points  some-

times called an "open integration formula" ! was applied at point

i-1 to predict the value of Q at point i, denoted as  Qi! . Thei p'

corrected value  Q ! was obtained by using the predicted value in
i c

a form of the well known "Simpson's" one-third rule  which, in this

form would be called a closed integration formula" !. Greater

accuracy was obtained by iterating the procedure, an advantage of
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this method since it permits one to place a lower bound on the

truncation error. Greater accuracy can also be realized by reducing

the integration interval.

The most evident disadvantage of this method is the requirement

that some starting procedure must be used to obtain the first four

values of node displacements and velocities. The Runge-Kutta scheme

can be and was used to determine these starting values. Another

disadvantage is that changes in the interval of integration are

difficult to make during the solution process.

Run e-Kutta method. A description of this method and the

procedural steps needed to employ it are also available in most

numerical analysis books and will not be given here. There are

different order formulas associated with the Runge-Kutta methods;

the fourth order formulas were used in this analysis. In essence,

the procedure employs forward integration formulas with known

values at point i-1 to estimate Qi and Qi.

It was tried because of its proven suitability to nonlinear

differential equations of the type found herein. In contrast with

Milne's predictor-corrector method the integration interval can be

changed at any time without difficulty, and it is self starting.

Its major disadvantage is that it is rather difficult to estimate

errors.



3.2 Summary

Since an adequate recursion equation could not be developed,

the choice of a solution method was reduced to Milne's predictor-

corrector method or the Runge-Kutta method.

Milne's method without iteration and the fourth-order Runge-

5
Kutta method have the same truncation error, of order  ht!, dt

being the interval of integration. Outwardly, it would appear that

Milne's method would reach a solution in half the time required by

the Runge-Kutta method since the former requires roughly one-half

the number of calculations in one interval of integration. This

was not found to be the case. In fact, Milne's method required

approximately twice the time of Runge-Kutta to converge on the

solution. Specific reasons cannot be given for this occurrence but

it is known �4! that Milne's method is likely to be unstable,

which could account for the additional time required.

Another factor of importance in numerical solutions of dif-

ferential equations is what the writer chooses to call the "insta-

bility rate" of the solution process. If  ht! represents the
c

critical interval of integration or the maximum value of ht for

which the solution is stable, any value in excess of  ht! will
c

result in a divergence of the solution. The rate of divergence as

a function of the amount of excess in  At! is defined as the
c

instability rate. The Runge-Kutta method exhibited a high
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instability rate, an advantageous feature since large amounts of

computer time are not required to determine  At!
c

Also worth mentioning is the observation that values of  ht! c

in the Runge-Kutta method appeared to be insensitive to the initial

conditions or the external excitation forces on the system. Rather,

values of  At! exhibited a dependence on the characteristics of
c

the system itself, i.e., its mass and stiffness.

Based on these findings the fourth-order Runge-Kutta method

was selected as the more appropriate of the methods investigated.



CHAPTER IV

VALIDATION STUDY

4.1 General

An absence of experimental data on the lateral response of

full-scale offshore piling precluded a conclusive validation of the

method of analysis presented. Nevertheless, there were available

certain mathematical solutions and experimental tests which could

be used to determine the validity of the model to a great extent.

4.2 Analytical Study

Prior to studying the mathematical model's response with actual

or experimental cases, a simple analytical study was undertaken.

Its purpose was to check out the accuracy of the model, the numer-

ical solution scheme, and the computer coding.

Figure 4.1 shows the idealized elastic model used in the

analysis. The distributed weight, w, of the structure was lumped

at the node points shown and a concentrated weight of 63 pounds was

added to node 1. The procedure employed was to first determine the

fundamental frequency and mode shape of the structure by employing

a well known method for obtaining eigenvalues, the Stodola-Vianello

iteration procedure. Next, as initial conditions, the structure

was displaced laterally into a fundamental mode shape, released

with no initial velocity, and allowed to vibrate freely, with the
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NODE

1

lb/i
4

/in.70.8 in

80.4 in

10

FIGURE 4.1 � ELASTIC MODEL

TABLE 4 ' 1 - ELASTIC MODEL COMPARISONS

Nodal Die lacement in.!Node

Computed
aTheoretical

10

1.0000

0.6341

0.3147

0.1236

0.0601

0.0184

-0.0058

-0.0174

-0.0196

-0.0119

a After three complete cycles.

0.9995

0.6336

0.3145

0.1236

0.0602

0.0185

-0.0057

-0.0174

-O.OI97

-0.0119
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response being determined by the Runge-Kutta method described pre-

viously. The computed response of the structure is shown in

Table 4.1 along with the theoretical values. These are the lateral

nodal displacements after three complete cycles, with node 1 being

the top node and the others numbered consecutively downward. As

seen, the Runge-Kutta method is highly accurate in this case. The

fundamental frequency was computed as 2.95 cycles per second by the

iteration method and 2.94 cycles per second by the Runge-Kutta

method.

4.3 Structural Damping Study

The range of values for the structural damping factor, p, of

steel structures was found to be large. A test program was there-

fore conducted to determine g for the steel pipes used in the

experimental validation studies.

A 2 inch standard pipe, 13 feet in length, was instrumented

so that stresses could be measured as the pipe was allowed to

vibrate. One end of the pipe was fixed and the other end displaced

and then released. A record of stresses with time as the pipe

vibrated was then taken and the logarithmic decrement of the res-

ponse determined. The percent of critical damping was found to be

2.5 percent.

To relate percent of critical damping to the structural damping

factor, p, an analytical study was performed. A value of p equal to

0.015 was assumed for the structure shown in Figure 4.1 and the



response computed as the structure vibrated freely ~ This value of

p resulted in a 0.5 percent of critical damping, This procedure was

repeated for other values of p and the results are shown plotted in

Figure 4.2 From the plot it is seen that a value of p equal to

0.079 is needed to obtain 2.5 percent of critical damping.

4.4 Model Pile Studies

To obtain a measure of the mathematical model's accuracy in

simulating field conditions, field tests of model piles were con-

ducted. Three different size standard steel pipes were embedded in

a clay soil having a fairly constant composition with depth. The

test site was located just west of the northern end of the western

most north-south runway at the Texas A&M Research Annex. Since

other researchers �5! have made laboratory tests of the soil at

this site and have documented its properties, no description is

given here. Shown in Figure 4.3 is the configuration of the

embedded pipes, while Table 4.2 lists their dimensions and mechan-

ical properties'

Two basic types of tests were made on each pipe, static and

dynamic, and a description of each follows.

Static tests' Before performing the dynamic tests, static

lateral load tests were made, Figure 4.4 gives the results of

the 2.0 inch pipe test and shows the manner in which the load was

applied. For the 2.0 inch pipe the relationship between load and

deformation is seen to be approximately constant, as was also
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FIGURE 4 ' -3 - PIPE CONFIGURATION

TABLE 4.2 - PIPE DIMENSIONS AND PROPERTIES

Nominal B T v Mt/ f tL L L I

I,D.  in.!  in.!  in.!  in.! �b/ft!  in. !
Added

Vt  lb!

63. 01 ' 5 81.0 67 ' 0 7.0 2 ' 72 0.308

2.0 80.4 67 ' 5 3.3 3.65 0.664

3.0 63.0 89.0 4.5 7.58 3.000

63.0

66.0
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observed for the 1.5 inch and the 3.0 inch tests, indicating that

the soil and pipe material remain approximately in the linearly

elastic range, Some soil failure appeared to have occurred, how-

ever, at and just below the soil surface after the deformation at

the top of the pipe reached 2.75 inches. Table 4.3 lists the

slope of the P-6 curve for each of the three pipe tests.

TABLE 4.3 � STATIC LOAD DATA

Slope of P-6
Curve  lb/in.!

Pipe Size
 in.!

1.5 28.0

2.0 60.0

3.0 225 ' 0

pipes. A Stathem accelerometer, model number P-20-350, located at

the top of each pipe, measured acceleration with time after the

pipes were given an initial displacement and then released. Accel-

erations were recorded on a Honeywell 1508 visicorder oscillograph.

To prevent the accelerations and frequencies of vibration from

exceeding the accelerometer limits, a concentrated weight of

63 pounds was attached to the top of the 1.5 and 2.0 inch pipes,

and a weight of 66 pounds was attached to the top of the 3.0 inch

pipe. Results of these tests are discussed in the following section.
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4.5 Comparison of Field Tests with Model Predictions

Each idealized pipe used in simulating the test pipes consisted

of 10 lumped masses. Figure 4.5 shows the manner in which the pipes
were idealized and Table 4.4 lists information pertinent to each

configuration, including soil stiffnesses used in the analysis,
Concentrated weights equal to that of the field tests  reference

Table 4.2! were added to node l.

Although a considerable number of laboratory tests had been

performed on the soil from the test site, data which could be used
to determine the variation of soil modulus of subgrade reaction

with depth was not. readily available. To make this determination
an attempt was made to find a soil modulus which satisfied the

measured static and dynamic data. The 2.0 inch pipe configuration

was used in the analysis and the steps in the method employed were

as follows:

1. Three different variations of the soil modulus of subgrade

reaction with depth were assumed, viz., a triangular

distribution, a trapezoidal distribution, and a constant

distribution. These are shown as cases  a!,  b!, and  c!,

respectively, on Figure 4.6.

2. For each variation in step 1, the magnitude of the modulus

was varied to determine the effect on the deflection at

the top of the pipe. The lateral load at the top of the

pipe was set at 100 pounds in each case and the pipe and
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FIGURE 4,5 � GENERAL PIPE IDEALIZATION
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TABLE 4,4 � IDEALIZED PIPE DATA

a
Reference Figure 4. 5
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soil material were assumed to remain linearly elastic.

Deformations were determined by use of the idealized model

of Figure 4.5 and a finite-element computer program devel-

oped by the writer.

3. From the data generated in step 2, three curves were drawn,

depicting deformations at the pipe's top versus magnitude

of subgrade modulus y , These curves are shown in
S

Figure 4 ' 5.

4. For each type of variation in step 1, the magnitude of the

modulus was varied to determine the effect on the funda-

mental frequency of the idealized pipe-soll system. Again,

a finite-element computer program, developed. by the writer,

was used for this purpose.

5. From the data generated in step 4, three curves were drawn,

depicting fundamental frequency versus magnitude of sub-

grade modulus for the three variations described in step 1.

These curves are shown in Figure 4.7.

6. The field test values were then superimposed on each graph,

with a value of 1.5 inches being measured in the static

load test and a frequency of appro~imately 2,5 cycles per

second being measured in the dynamic test.

The triangular distribution was eliminated as a possibility

since an unreasonably large value of y would be required to satisfy
s

the measured static value. Based on the static analysis  reference

Figure 4.6!, a value of y equal to 44 appeared appropriate for
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case  c! and y equal to 75 for case  b!. Based on the dynamic
s

analysis  reference Figure 417!, y equal to 20 appeared appropriate
s

for case  c! and y equal to 35 for case  b!. The correct value of

y seemed to lie between 20 and 75 and therefore a value of
s

45  lb/in. ! was tried in the simulation studies of all three pipe3

experimental results, aelastic to plastic. After reviewing his

value of 0.2 inches was decided upon for

of each pipe.

the entire embedded length

configurations. The values of soil stiffness listed in Table 4.4

are based on this value, with case  b! utilized as the type of dis-

tribution. This magnitude and variation of subgrade modulus is in

general agreement with in situ measurements of a similar type

soil �2!.

Soil damping parameters were obtained from data acquired in

prior laboratory studies  ll! ~ With reference to Equation 2.24,

n for a "highly plastic" clay was found to be approximately 0.18.

Por the clay which best resembled that found at the test site,

designated as KA 50 in the referenced report, the damping factor J

was found to be approximately 0.9 seconds per foot, or 0.575 seconds

per inch for velocities in inches per second. These values of n

and J were assumed applicable along the entire embedded length of
m

all three pipe configurations.

Studies made by Gill �2! were used to determine the value of

L U, the deformation at which the soil's properties transit from
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One other parameter had to be determined before the dynamic

analysis could proceed, that being a determination of the initial

displacement of each node of each pipe confi.guration. The only

displacement measured in the field tests was that at the top of

each pipe just prior to release. Analytical means were thus neces-

sary to define the initial displacement at the other 9 nodes. A

finite-element computer program developed by the writer was used

for this purpose. Since it was written for a linearly elastic

structure, a trial and error scheme was necessary to determine the

desired displacements. Results of this analysis indicated that

soil failure had occurred at node 4 of the 3.0 inch pipe, and at

nodes 1 and 2 of both the 2,0 and 1.5 inch pipes. These results

were confirmed by observations made by the writer during the field

tests and consequently confirm to some extent the assumption made

regarding LmU'

Shown in Figures 4.8, 4.9, and 4.10 are the results of the

simulation and field test studies. The acceleration at the top of

each pipe versus time is plotted and, in general, good agreement

between test and simulation values exist.

Predicted and experimental frequencies were in reasonable

agreement, with the predicted value being slightly low in the

3.0 and 1.5 inch pipes and slightly high in the 2.0 inch pipe.

Regarding the amount of damping, simulation results exhibited

excess damping in the 3.0 inch pipe, insufficient damping in the

2.0 inch pipe, and approximately the correct amount in the 1.5 inch



CV

O

O

CO

O

O M

O

O

O

O
O N
I

60

M '?I
M

CJ

I



CD

O M

CD

CD

CD A CD Vl CD Ih CD

CD CD R R hl
I I I I

U CJ

I



05
V g

0
rl

g rn

I4

C3

H
A

CO

C!

Cl

C! Ul

C!
tD

C! I

 e,g! uoyqsxayaoay

H C!
~

I
C3



63

pipe. During field tests it was noted that the 2.0 inch pipe was

not as firmly embedded as the other two pipes. As a result more

sliding friction between the pipe wall and adjacent soil likely

occurred causing a greater response attenuation. It may be neces-

sary in future analytical model studies to account for sliding

friction of this type.

If the 2.0 inch pipe did experience considerable sliding or

columb friction, the test results suggest that the amount of

soil viscous damping assumed for the mathematical model was exces-

sive. This can be deduced from a consideration of the ratio of

structural damping to soil viscous damping. In comparing the

simulated response of the three pipe configurations, the percent of

critical damping increased with pipe size. As assumed, structural

damping offered a constant contribution to the total percent of

critical damping, independent of pipe size, and it can therefore

be concluded that the increase was a result of increased soil

damping. Thus, the error produced by excessive soil damping would

be more pronounced at larger pipe sizes.

Although this validation study was limited in scope, the

results appear to support the basic approach taken in developing

the pipe-soil model ~ Obviously, more tests are needed, however, of

both model and full-scale piles, to further verify the mathematical

model's capabilities and to define unknown parameters, such as the

damping characteristics of various soils under lateral loads.
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A free vibration test was planned for the field studies of the

three pipes where the upper part of the pipes would have been sur-

rounded by water. However, difficulties in setting up the tests

prevented their successful conclusion. It seems probable, however,

that the state-of-the-art in defining the kinetics and kinematics

of both the water and wave environment about offshore piles has

reached a reliable stage. For this reason, the inability to check

the simulated pile's interaction with a water environment is not

believed to be a significant obstacle in its validation.



CHAPTER V

PARAMETER STUDIES

5. 1 General

In this chapter an effort is made to illustrate the influence

of several significant parameters on the pile's response.

The pile utilized in the studies is shown in Figure 5.1. The

scale is distorted to clarify the pile's details. To simulate the

inertial and stiffness effects of the deck section of an offshore

platform, an effective mass of 1,000 in.-lb/sec was added to node 1;
2

and k�and k�|,'reference Figure 2.4! were arbitrarily chosen to be

6,000 lb/in. and 50,000,000 in.-lb/radian, respectively. The large

value of k was intended to prevent !oint rotation at node 1, a

situation typical of many offshore platforms. In using this

"typical" pile for the parameter studies, the fourth ob]ective of

this research was also met, i.e., application of the mathematical

solution to obtain the dynamic response of a. typical offshore pile.

In all of the studies, the drag coefficient was assumed to

equal 1.0 and the coefficient of mass was assumed to equal 1.5. A

wave having a 25 foot height, a 10 second period, and a length of

450 feet provided the dynamic loading in each case.

5.2 Distribution of Modulus of Subgrade Reaction

One of the several problems facing designers of pile supported

structures is to determine how to distribute the soil's resistance
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FIGURE 5.1 � TYPICAL PILE AND ITS IDEALIZATION
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with depth. To shed some light on the influence such choices have

on the response of the pile, four different cases were studied,

Details of each case are described in Figure 5.2 and Table 5.1.

Note that in case A the pile is assumed to be rigidly fixed 40 feet

below the sea bottom.

The initial displacements and velocities of the pile were

assumed to be zero. For the soil damping characteristics, J wasm

assumed to equal 0.575 sec/in. and L was assumed to equal 0.2 in.,

with both values assumed constant along the embedded length of the

pile. It was further assumed that the structural damping factor

was 0.079 and that there was no axial load on the pile.

Shown in Figure 5.3 is the lateral displacement of node 6 as a

function of time for the four cases. The relative position of the

wave with respect to time is shown at the top of the figure, e.g,,

at 5 seconds the wave trough was located at the pile and at

10 seconds the crest was located there. Node 6 displacements were

chosen for illustrative purposes since the lateral displacement of

pile reached a maximum at that point.

Displacements based on cases A and B are quite similar. In

general, the results were as anticipated, with the displacements

decreasing as the degree of fixity increased, The range of maximum

displacement was from 1.6 inches for case D to 2.17 inches for

case B or a difference of 26 percent.
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Node
~ 1

10

ll

12

13

14

15

16

FIGURE 5.2 � SUBGRADE MODULUS DISTRIBUTION

TABLE 5.1 � SUBGRADE DISTRIBUTION DATA

y ' s  lb/in. !

Case 2 ~2 3

A 0 0

0 60 60 150

C 25 150 150 150

D 150 150 150 150
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5.3 Soil Damping

To determine the relative influence of soil damping, case B of

the previous section was rerun with 9 equal to zero at all points
m

along the embedded length of the pile. Zt was further assumed that

the stiffness of the soil remained elastic, i.e., L U was assigned
mU

a large value.

Differences in these two conditions was slight, especially

along the length of the pile above the mudline. Figure 5.4 shows a

plot of lateral displacements at node 9 as a function of time. The

differences that do exist occur mainly at changes in the direction

of motion.

Although this comparison suggests that soil damping and its

nonlinear stiffness characteristics may not be critical, it would be

premature to make this conclusion before additional studies are

conducted. The stress history of the pile, in particular the

portion below the mudline, needs to be investigated rather than

just displacements. Future pile studies to be conducted at

Texas A&M University should provide valuable data on so!,l damping.

5.4 Static Versus Dynamic Displacements

Many structures, subject to dynamic loading, are designed by

methods of statics, with a factor of safety applied to the loads to

account for dynamic effects. The question that always arises is

just how large should the factor of safety be. Kith the
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capabilities of a dynamic model of the type described herein, this

uncertainty can be greatly reduced.

Figure 5.5 shows the maximum displaced position of the pile as

determined from a static and dynamic analysis of the sub]ect pile.

The dynamic conditions were as described in Section 5.2, case 8.

In the static analysis, the case 3 static soil properties were used

and the loads were those that would exist on a rigid vertical pile

when the crest of the wave, described in Section 5.2, passe! the

pile. The difference is significant along the upper portion of the

pile, decreasing considerably along tPe lower portion.

5.5 Wave-Structure Interaction

In formulating the equations to describe the wave forces

 reference equations 2.13 and 2.22!, provisions were made to account.

for the relative velocities and accelerations between the pile and

wave particles. This portion of the parameter study was undertaken

to determine if such a provision is necessary for the type of

problems under consideration. Elimination of the need to consider

wave-structure interaction would simplify the analysis and reduce

the computer time required for problem solutions.

Figures 5.6 and 5.7 show the lateral displacement of nodes l

and 6, respectively, versus time, with and without the effects of

interaction. These results indicate that wave-structure interaction

is an important factor in the dynamic analysis of offshore piling.



73

1.0 2.0

 b! below midline
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Maximum displacements in the interaction case are greater than

those of the no-interaction case by a factor of approximately 1.6.

It is interesting to note that the frequency of node 1 was

approximately 0.4 cycles per second. Sy a separate analysis

 eigenvalue computer program developed by the writer!, the funda-

mental frequency of the pile was computed to be 0.39 cycles per

second.

The conditions of this study were identical to that described

in Section 5.2. Case 8 of Table 5.1 was used for the soil resis-

tance.

5.6 Axial Load Effects

Figure 5.8 shows t' he pile's response for three different axial

loads, 400,000 pounds tension, 400,000 pounds compression, and no

axial load. The conditions in this study were identical to that

described in Section 5.2. Case 8 af Table 5.1 was used for the

soil resistance.

As expected, when compared to the no axial load case, the

tensile load reduced the maximum displacement whereas the compres-

sive load acted to increase it. For the upper portion of the pile

where the thickness is 0.75 inches, the cross-sectional area is

69.0 square inches and with an axial load of 400,000 pounds the

axial stress would be 5,600 pounds per square inch. This stress

level is probably typical for offshore piles, and if so, the
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maximum displacements computed by the no load case may be expected

to he in error by as much as +10 percent, or more.

To account for axial load effects j.n analyzing the entire off-

shore platform, the stiffness matrix would have to be modified at

each new integration step since the axial load in each member

changes accordingly. In the example presented in Figure 5.8, it

was assumed that the axial load rempined constant throughout, the

period of analysis.
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CHAPTER VI

CONCLU IONS

The fundamental objective of this research was to develop a

mathematical model for determining the dynamic response of an off-

shore pile subjected to wave loading. The proposed model meets

these requirements. It can be applied to study the influence of

wave-pile interaction, the effects of a soil medium whose dynamic

and static properties are nonlinear, the effects of axial load in

the pile, and other factors'

A good comparison was obtained between results from dynamic

tests of model piles and simulations of the tests by the mathe-

matical model. Although the experimentaL tests were necessarily

limited, the correlations support the basic approach taken in

developing the model.

General conclusions reached as a result of a limited parameter

study of a typical offshore pile follow.

1. Magnitude and distribution of the soil subgrade modulus

with depth of embedment influences the dynamic response

considerably.

2. The soil does not appear to dissipate 1arge amounts of

energy of the vibrating system. More studies are needed,

however, to verify this observation.
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3. Maximum displacements based on dynamic analysis were con-

siderably greater than maximum displacements by static

analysis, especially along the upper portion of the pile,

Consideration of wave-pile interaction is warranted in the

dynamic analysis of offshore piles.

5. Neglecting the axial load effects in the pile may result

in an error of +10 percent in maximum displacements.

In summary, the development of the model described herein

should serve to advance the state-of-the-art in design and analysis

of offshore pile supported structures, Subject to further compar-

isons with full-scale tests, the next logical step would be an

integration of the proposed model with a model of the complete off-

shore structure.
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CHAPTER VII

RECOMMENDATIONS

The following areas are recommended for further research:

1. To better understand the dynamic properties of soil under

lateral loads, additional field tests should be performed,

Model piles, similar to those described herein, or possibly

full-scale piles, could be instrumented to measure accel-

erations and stress distributions at selected points along

the pile. Tests should be conducted in both cohesive and

noncohesive soils.

2. More parameter studies are needed. For example, the

effects of prolonged soil fpilure on the pile's response

merits further consideration. In the examples reported,

only one complete wave cycle was investigated and the soil

was assumed to have no initial soil failure,

3. The computer program should be modifie4 to salve for and

print out stress resultants at selected points along the

pile. The stress variations with time could then be

studied, It is likely that the design of most offshore

structures is governed by stresses rather than displacements.

4. The computer program should be modified to permit the con-

sideration of various wave theories.  Airy theory was

utilized in this analysis.!



5. Subject to further comparisons with full-scale or model

pile tests, the pile model should be integrated with a

model of the complete offshore structure.
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COMPUTER PROGRAM DESCRIPTION

A simplified flow chart og the program used in the analysis is

shown in Figure Al. Items up to point 5 in the chart are completed

in the calling or MAIN program. At point B the program branches and

one of six possible paths ip taken, Each of the six cases is a

subprogram containipg fourth-order Runge-Kutta solutions for six

distinct situations. The characteristics of each case are described

in Table Al. By using the six cases a more efficient program was

possible.

Examples described in Chapter V were run on an IBM 360/65

computer. Each example required approximatyly six minutes of compu-

ter time.

Output from the program consists pf displacemen s, velocities,

and accelerations at each node. Also printed out at !he termination

of each rug are thy values of both positive and negative permanent

set which occurs duping the event,



9P

FIGURE Al � FLOW CHART



FIGURE Al �  CON'T!
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COMPUTER PROGRAM INPUT
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COMPUTER PROGRAM INPUT

Input Definitions

in.;

BCVEL J,1! ~ an array containing the initial node velocities,

in./sec;

DATE J! an array containing the date of the test or computer

run;

= numerical integration increment, sec;DELTAT

ELPROP J,K! = an array containing pile segment properties;

for pile segment J,

ELPROP J,1! = diameter of segment, in,',

ELPROP J,2! = length of segment, in.;

2.ELPROP J,3! = cross-sectional area of segment, in.

4
ELPROP J,4! = second moment of area of segment, in.

ELPROP J,5! modulus of elasticity of segment, lb/in.
2

ELPROP J,6! = weight density of segment material,

lb/in. 3.

ELSOIL J,K! ~ an array containing the soil element properties;

for element J,

ELSOIL J,l! soil stiffness, lb/in,;

ELSOIL J,2! soil damping factor  J !, sec/in.;
m

ELSOIL J,3! soil damping factor  n !, dimensionless;

The following symbols are used in the program input:

BCDISP J,1! = an array containing the initial node displacements,
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ELSOIL J,4! = soil density, lb/in. 3.

ELSOIL J,5! = ultimate displacement of soil  L !, in.;

computer run;

Runge-Kutta case  See Table Al!;

number of time increments  DELTAT! to be computed

 NITER multiplied by DELTAT equals the real time of

the event!;

option code; if NOPl = 0, individual pile segment

properties must be input, and if NOP1 1, all pile

segments possess the same properties;

option code; if NOS1 0, individual soil element

properties must be input, and if NOSl = 1, all soil

elements possess the same properties;

option code; if NOWl = 0, nodal velocities are not

printed out, and if NOW2 = 1, nodal velocities are

NCASE

NITER

NOP1

NOS1

NOW1

printed out;

option code; if NOW2 = 0, nodal accelerations are notNOW2

printed out, and if NOW2 = 1, nodal accelerations are

printed out;

total number of pile segments;

number of pile segments above midline;

output print interval;

2
cross-sectional area of pile, in.

NUMM

NUMMTP

NWRITE

PAREA

3.weight density of pile material, lb/in.

ESSAG J! = an array containing identification of the test or
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PDIA

PELAS

PKTOPH

PKTOPR

PLEN

PLOAD

lb;

PMTOP

P INERT

FSETP  J!

PSETN J!

SDMCOE

SOILC

SOILD

SOILK

SOILMC

SOILN

SOILUL

TZMPP   J!

pile diameter, in.;

2
modulus of elasticity of pile, lb/in.

equivalent lateral platform sti.ffness  k !, lb/in.;

equivalent rotational platform stiffness  k !,

in.-lb/rad;

length of pile segments, in.;

axial load in pile  + if tension and � if compression!,

2equivalent platform mass, lb-sec /in.;
4

second moment of area of pile, in.

an array containing initial values of the permanent

set in the positive direction  PPS ! of each soil

element, in.;

an array containing initial values of the permanent

set in the hegative direction  PNS ! of each soil

element, in.;

structural damping factor  p!, dimensionless;

soil damping factor  J !, sec/in.;
m

soil density, lb/in. 3,

stiffness of soil elements, lb/in.;

soil mass coefficient, dimensionless;

soil damping factor  n !, dimensionless;

ultimate displacement of soil  L !, in.;
mu

an array containing initial maximum nodal displacements

from the mudline to the bottom of the pile in the
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positive direction, in.;

TEMPN�! = an array containing initial maximum nodal displacements

negative direction, in.;

TIME I

UPPLIN

VELOO

wave length, in.;

wave period, sec;

~ water density, lb/in. 3.

YWAT

WAVEH

WAVEL

WAVET

WDEN

WDRAG

WNASS

from the mudline to the bottom of the pile in the

time at which solution is to be in'.tiated, sec;

maximum value of lateral displacement of node 1 per-

mitted  if exceeded the program is terminated!, in.,'

nodal velocity at which the structural damping is

completely effective, in./sec;

wave height, in.;

drag coef f icient, dimensionless;

mass coefficient, dimensiopless; and

depth of water, in.
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Input Format

I. First card

Column FormatItem

ESSAG

II. Second card

ColumnI tera Format

1-20DATE

III. Third card

ColumnItem Format

NUMN

6-10NUNMTP

NCASE

NOW1

NOW2

NOP1

NOS1

Column FormatItem

F  punch decimal!1-10PDIA

F  punch decimal!PLEN

PAREA

PXNERT

PELAS

11-15

16-20

21-25

26-30

31-35

IV. Fourth card  omit if NOP1 ~ 0!

11-20

21-30

31-40

41-50

51-60

I  right justified!

I  right justified!

I  right justified!

I  right justified!

I  right justified!

I  right justified!

I  right justified!

F  punch decima3.!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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V. Next series of cards  omit if NOPl 1!

Pile segment properties are input in sequential order

beginning with segment 1. +ere are as many cards in this

series as there are pile segments. For segment J the input

is as follows:

FormatColumnItem

Column

1-10

11-20

21-30

31-40 F  punch decimal!

41-50 F  punch decimal!

a It is suggested that this be set equal to zero.

VII. Next series of cards  omit if NOSl 1!

Soil element properties are input in sequential order

beginning with the element at the mudline. There are as many

cards in this series as there are soil elements. For element

J the input is as follows:

ELP ROP   J F 1! 1-10

ELPROP J,2! 11-20

ELPROP J,3! 21-30

ELPROP J,4! 31-40

ELPROP J,5! 41-50

ELPROP J,6! 51-60

VI. Next card  omit, if NOS1 0!

Item

SOILK

SOILC

SOILN

SOILD

SOILUL

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

Format

F  punch decimal!

F  punch decimal!

F  punch decimal!
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F  punch decimal!

F  punch decimal!

F  punch decimal!

1-10

11-20

21-30

31-40 F  punch decimal!

41-50 F  punch decimal!

a It is suggested that this be set equal to zero.

VIII. Next card

Column Format

1-20

a It is suggested that this be set equal to zero.

IX. Next card

ColumnItem Format

F  punch decimal!

F  punch decimal!

1-10

11-20

SDMCOE

VELOO

a It is suggested that this be set equal to 0.1.

X. Next card

Column Format

1-10 F  punch decimal!

F  punch decimal!

F  punch decimal!

11-20

21-30

EL SOIL  J, 1!

ELSOIL  J, 2!

ELSOIL   J, 3!

ELSOIL J,4!

ELSOIL J,5!

Item

PKTOPH

PKTOPR

PLOAD

PMTOP

SOILMC

Item

DELTAT

TIMEI

VPPLIM

21-40

41-50

51-60

61-70

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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Column FormatItem

REWRITE

NITER

I  right ]ustified!

I  right ]ustified!

31-35

36-40

XI. Next series of cards

This series of cards contain the initial displacements

of each node ~ Initial displacements are input in sequential

order beginning with node l. Eight values are allowed per

card. The first card of the series is as follows  assuming

there are at least 8 nodes!:

Column Format.Item

BCDISP �,1! F  punch decimal}1-10

BCDISP�,1! 11-20 F  punch decimal!

If needed, the next card contains BCDISP 9,1! through

BCDISP�6,1!, etc.

XII. Next series of cards

This series of cards contain the initial velocities of

each node. Initial velocities are inppt in sequential order

beginning with node 1. Eight values are allowed per card.

The first card of the series is as follows  assuming there are

BCDISP �, 1!

BCDI SP �, 1!

BCDISP�,1!

BCDISP �,1!

BCDISP �,1!

BCDISP  8,1!

21-30

31-40

41-50

51-60

61-70

71-80

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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Column Format

If needed the next card contains BCVEL 9,1! through

BCDVEL�6,1!, etc.

NOTE: No further input required if NCASE = l.

XIII. Next: series of cards

This series contains the initi,al values of the soil per-

manent set in the positive displacement direction, Values are

input in sequential order beginning with the node at the mud-

line. The first card of the series is as follows  assuming

there are at least 8 nodes from the mudline to the bottom of

the pile!:

ColumnItem

PSETP�!

PSETP�!

PSETP�!

PSETP�!

Format

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

1-10

11-20

21-30

31-40

at least 8 nodes!:

Item

BCVEL�,1!

BCVFL�,1!

BCVEL�,1!

BCVEL�,1!

BCVEL�,1!

BC VEL �, 1!

BCVEL �, 1!

BCVEL 8,1!

1-10 F  punch decimal!

11-20 F  punch decimal!

21-30 F  punch decimal!

31-40 F  punch decimal!

41-50 F  punch decimal!

51-60 F  punch decimal!

61-70 F  punch decimal!

71-80 F  punch decimal!
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Column Format

F  punch decimal!41-50

51-60 F  punch decimal!

F  punch decimal!61-70

71-80 F  punch decimal!

If needed, the next card contains PSETP 9! through

PSFTP�6!, etc,

XIV. Next series af cards

This series contains the initial values of the soil

permanent set in the negative displacement direction. Values

are input in sequential order begs.nning with the node at the

mudline. The first card of the series is as follows  assuming

there are at least 8 nodes from the mudline to the bottom of

the pile!:

Item

If needed, the next card contains PSETN 9! through

PSETN�6!, etc.

Item

PSETP �!

PSFTP �!

PSETP�!

PSETP  8!

PSETN l!

PSETN�!

PSETN�!

PSETN�!

PSETN�!

PSETN�!

PSETN�!

PSETN 8!

Column

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

Format

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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XV ' Next series of cards

This series contains the initial values of the maximum

nodal displacements in the positive direction from the mudline

to the bottom of the pile. Values are input in sequential

order beginning with the node at the mudline. The first card

of the series is as follows  assuming there are at least 8

nodes from the mudline to the bottom of the pile!:

Column Format

1-10

71-80 F  punch decimal!

If needed, the next card contains TEgP 9! through TENPP�6!,

etc.

XVI, Next series of cards

This series contains the initial values of the maximum

nodal displacements in the negative direction from the mudline

to the bottom of the pile. Values are input in sequential order

beginning with the node at the mudline. The first card of the

series is as follows  assuming there are at least 8 nodes

from the mudline to the bottom of the pile!:

Item

TEMP �!

TZm'P �!

TamP �!

Tern+ �!

TENPP �!

Tmep�!

TamP �!

TeeP  8!

11-20

21-30

31-40

41-50

51-60

61-70

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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Column Forrnal tItem

1-10

If needed, the next card contains TEMPN 9! through

TEMPN�6!, etc.

NOTE: No further input required if NCASE < 3,

XVII, Next card

~Colu mItem Format

F  punch decimal!1-10YWAT

11-20 F  punch decimal!

21-30 F  punch decimal!

31-40 F  punch decimal!

WDEN

WDEAt.:

WMAS S

NOTE: No further input required if NCASE ~ 4.

ColumnItem

WAVET

WAVEL

WAVEH

~Fo aat

F  punch decimal!

F  punch decimal!

F  punch decimal!

1-10

11-20

21-30

TEMPN �!

TEKPN �!

TEMPN �!

TEMPN �!

TEMPN �!

TEMPN�!

TEMPN�!

TEMPN  8!

XVIII. Next card  final card!

11--20

23,-30

31-40

41-50

51-60

61-70

71~80

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!

F  punch decimal!
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NOTE: Additional problems can be run by repeating the

appropriate fnpug in items I through XVIII.
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APPENDIX III

NOTATION
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NOTATION

The following symbols are used in this paper:

A ~ cross-sectional area;

a z,t! water particle acceleration at depth z and

time t;

C drag coefficient;

CI = inertia coefficient;

D = diameter of pile at dept' z~

E modulus of elasticity;

F ~ axial load in any pile seooent, see

Equation 2.6;

Fi t! concentrated wave force at node i at time t;

 F t!j ~ matrix of concentrated wpve forces;

f z,t! ~ wave force in horizontal direction per unit

length at dept' z and time ti

g gravitational acceleration;

H ~ wave height;

h ~ water depth;

I area moment of inertia;

3 soil viscous darpping constant~

[1] - [k]+[k]'
e g

[k ] matrix of linearly elastic stiffness coef-
e

ficieqts of any pile segment;

[k ] matrix of "geometrical" stiffness coeffi-
g

cients of any pile segment~
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k lateral stiffness of platform;

1
KiD 2 CDPDi

mD.
2

i
K.~Cp �;

iI I 4

K = lateral stiffness of soil at node m;
ms

IK ] = matrix of stiffness coefficients of assembled

pile segments;

rotational stiffness of platform;

matrix of reduced stiffness coefficients of

pile;

L ~ length of pile segment i;

L U lateral deformation of soil at node m at
mU

which P U is reached;

[Nj = diagonal matrix containing lumped masses;

Mi - lumped mass at node i;

 N !,  N !,  N !,  N ! = matrix of multipliers used in computing the

spri.ng and dampi,ng forces of the soil;

soil viscous damping constant;

 P! matrix of total soil forces acting on pile;

 Pd! matrix of soil damping forces;

p =p +p
m md ms

P d soil damping force at node m;

P soil static resistance in soil spring at
IIls

node m;

P U ~ failure or ultimate lateral load of soil at
node m;
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PNS ~ amount of negative permanent set of soil at

node m;

PPS amount. of positive permanent set of soil at
m

node m;

 P } matrix of soil static resistance in soil
8

springs;

 Q! matrix of node displacements;

 q! matrix of generalized end displacements of

any pile segment;

q generalized displacement at end of any pile

segment, i = 1,2,...,6;

Q , Q , Q displacement, velocity, and acceleration,

respectively, at node i in ! direction;

ri = h + zi,

R Reynolds number;

 S} = matrix of external loads;

 s} = matrix of stress resultants at end of any

pile segment;

 SD! matrix of structural damping forces;

 S~L! matrix of structural damping forces asso-

ciated with lateral degrees of freedom;

s stress resultant at end of any pile segment,

1 y2y ~ ~ ~ y6y

Si = external load at node i in ! direction',
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v z,t! water particle velocity at depth z and

time t;

weight of segment i per uni.t length;

horizontal coordinate;

distance from still water level tu node i;

w,
i

structural damping factor;

wave angular frequency;

wave number;

level;

ht = time increment of integration;

6 = pile model deformation;

y = soil modulus of subgrade reaction;

[ j = square matrix;

{ ! = column matrix;

transpose of column matrix; and

~ absolute value.

wave length;

n instantaneous vertical displacement of water

surface profile above or below still water




